Hierarchies of holonomy groupoids for foliated bundles

نویسندگان

چکیده

We give a new construction of the holonomy groupoid regular foliation in terms partial connection on diffeological principal bundle germs transverse parametrisations, which may be viewed as systematisation Winkelnkemper’s original using ideas from gauge theory. extend these to construct novel for any foliated bundle, we prove sits at top hierarchy jet groupoids associated with bundle. This shows that while Winkelnkemper is smallest Lie integrates foliation, it far does so.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristic Classes of Foliated Surface Bundles with Area-preserving Holonomy

Making use of the extended flux homomorphism defined in [13] on the group SympΣg of symplectomorphisms of a closed oriented surface Σg of genus g ≥ 2, we introduce new characteristic classes of foliated surface bundles with symplectic, equivalently area-preserving, total holonomy. These characteristic classes are stable with respect to g and we show that they are highly non-trivial. We also pro...

متن کامل

The Index of Operators on Foliated Bundles

We compute the equivariant cohomology Chern character of the index of elliptic operators along the leaves of the foliation of a flat bundle. The proof is based on the study of certain algebras of pseudodifferential operators and uses techniques for analizing noncommutative algebras similar to those developed in Algebraic Topology, but in the framework of cyclic cohomology and noncommutative geo...

متن کامل

Fell Bundles over Groupoids

We study the C*-algebras associated to Fell bundles over groupoids and give a notion of equivalence for Fell bundles which guarantees that the associated C*-algebras are strong Morita equivalent. As a corollary we show that any saturated Fell bundle is equivalent to a semi-direct product arising from the action of the groupoid on a C*-bundle. A C*-algebraic bundle (see [F2, §11]) over a locally...

متن کامل

Equivariant Holonomy for Bundles and Abelian Gerbes

This paper generalizes Bismut’s equivariant Chern character to the setting of abelian gerbes. In particular, associated to an abelian gerbe with connection, an equivariantly closed differential form is constructed on the space of maps of a torus into the manifold. These constructions are made explicit using a new local version of the higher Hochschild complex, resulting in differential forms gi...

متن کامل

Cut-and-paste on Foliated Bundles

We discuss the behaviour of the signature index class of closed foliated bundles under the operation of cutting and pasting. Along the way we establish several index theoretic results: we define Atiyah-Patodi-Singer (≡ APS) index classes for Dirac-type operators on foliated bundles with boundary; we prove a relative index theorem for the difference of two APS-index classes associated to differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2021

ISSN: ['1572-9060', '0232-704X']

DOI: https://doi.org/10.1007/s10455-021-09792-3